Skip to main content

Quick Mailbox Item Type eDiscovery Powershell script

One of the features of eDiscovery in Exchange 2013 and greater is the ability to do a search of Mailbox and just return the statistics on particular Items (or searches). This allows you to do a really quick search without the need to process any of the ResultSet of the Search.  To limit the Items types returned by an eDiscovery query you can use the kind Keyword property in a KQL query. The feature set of which has recently been updated https://technet.microsoft.com/en-us/library/dn508399(v=exchg.150).aspx to now allow you to include Lync (or IM) items. So one little cool thing you can do with this using a multiple OR logic query with eDiscovery is get a quick list of the number of exchange Items by type in a Mailbox eg the KQL for this would look like

"kind:email OR kind:meetings OR kind:contacts OR kind:tasks OR kind:notes OR kind:IM OR kind:rssfeeds OR kind:voicemail"

and this would produce a report that looks like



I've put together a sample of a script to do this which you can download form here. To run the script use

Get-MailboxItemTypeStats -MailboxName user@domain.com -OutputFileName reportfile.csv

The code itself looks like

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
####################### 
<# 
.SYNOPSIS 
  Performs an eDiscovery Search using Powershell and the Exchange Web Services API in a Mailbox and produces a CSV report of ItemType in that Mailbox
 
.DESCRIPTION 
  Performs an eDiscovery Search using Powershell and the Exchange Web Services API in a Mailbox and produces a CSV report of ItemType in that Mailbox
 
 Requires the EWS Managed API from https://www.microsoft.com/en-us/download/details.aspx?id=42951

.EXAMPLE
 PS C:\>Get-MailboxItemTypeStats -MailboxName user.name@domain.com -OutputFileName Report.csv

 This Example Performs an eDiscovery Search using Powershell and the Exchange Web Services API in a Mailbox and produces a CSV report of ItemType in that Mailbox
#> 
function Get-MailboxItemTypeStats 
{ 
    [CmdletBinding()] 
    param( 
     [Parameter(Position=0, Mandatory=$true)] [string]$MailboxName,
  [Parameter(Position=1, Mandatory=$true)] [PSCredential]$Credentials,
  [Parameter(Position=2, Mandatory=$true)] [string]$OutputFileName
    )  
  Begin
   {
  $KQL = "kind:email OR kind:meetings OR kind:contacts OR kind:tasks OR kind:notes OR kind:IM OR kind:rssfeeds OR kind:voicemail";    
  $SearchableMailboxString = $MailboxName;

  ## Load Managed API dll  
  ###CHECK FOR EWS MANAGED API, IF PRESENT IMPORT THE HIGHEST VERSION EWS DLL, ELSE EXIT
  $EWSDLL = (($(Get-ItemProperty -ErrorAction SilentlyContinue -Path Registry::$(Get-ChildItem -ErrorAction SilentlyContinue -Path 'Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Exchange\Web Services'|Sort-Object Name -Descending| Select-Object -First 1 -ExpandProperty Name)).'Install Directory') + "Microsoft.Exchange.WebServices.dll")
  if (Test-Path $EWSDLL)
      {
      Import-Module $EWSDLL
      }
  else
      {
      "$(get-date -format yyyyMMddHHmmss):"
      "This script requires the EWS Managed API 1.2 or later."
      "Please download and install the current version of the EWS Managed API from"
      "http://go.microsoft.com/fwlink/?LinkId=255472"
      ""
      "Exiting Script."
      exit
      } 
    
  ## Set Exchange Version  
  $ExchangeVersion = [Microsoft.Exchange.WebServices.Data.ExchangeVersion]::Exchange2013_SP1  
    
  ## Create Exchange Service Object  
  $service = New-Object Microsoft.Exchange.WebServices.Data.ExchangeService($ExchangeVersion)  
    
  ## Set Credentials to use two options are availible Option1 to use explict credentials or Option 2 use the Default (logged On) credentials  
    
  #Credentials Option 1 using UPN for the windows Account  
  $creds = New-Object System.Net.NetworkCredential($Credentials.UserName.ToString(),$Credentials.GetNetworkCredential().password.ToString())  
  $service.Credentials = $creds      
  #$service.TraceEnabled = $true
  #Credentials Option 2  
  #service.UseDefaultCredentials = $true  
    
  ## Choose to ignore any SSL Warning issues caused by Self Signed Certificates  
    
  ## Code From http://poshcode.org/624
  ## Create a compilation environment
  $Provider=New-Object Microsoft.CSharp.CSharpCodeProvider
  $Compiler=$Provider.CreateCompiler()
  $Params=New-Object System.CodeDom.Compiler.CompilerParameters
  $Params.GenerateExecutable=$False
  $Params.GenerateInMemory=$True
  $Params.IncludeDebugInformation=$False
  $Params.ReferencedAssemblies.Add("System.DLL") | Out-Null

$TASource=@'
  namespace Local.ToolkitExtensions.Net.CertificatePolicy{
    public class TrustAll : System.Net.ICertificatePolicy {
      public TrustAll() { 
      }
      public bool CheckValidationResult(System.Net.ServicePoint sp,
        System.Security.Cryptography.X509Certificates.X509Certificate cert, 
        System.Net.WebRequest req, int problem) {
        return true;
      }
    }
  }
'@ 
$TAResults=$Provider.CompileAssemblyFromSource($Params,$TASource)
$TAAssembly=$TAResults.CompiledAssembly

  ## We now create an instance of the TrustAll and attach it to the ServicePointManager
  $TrustAll=$TAAssembly.CreateInstance("Local.ToolkitExtensions.Net.CertificatePolicy.TrustAll")
  [System.Net.ServicePointManager]::CertificatePolicy=$TrustAll

  ## end code from http://poshcode.org/624
    
  ## Set the URL of the CAS (Client Access Server) to use two options are availbe to use Autodiscover to find the CAS URL or Hardcode the CAS to use  
    
  #CAS URL Option 1 Autodiscover  
  $service.AutodiscoverUrl($MailboxName,{$true})  
  "Using CAS Server : " + $Service.url   
     
  #CAS URL Option 2 Hardcoded  
    
  #$uri=[system.URI] "https://casservername/ews/exchange.asmx"  
  #$service.Url = $uri    
    
  ## Optional section for Exchange Impersonation  
    
  #$service.ImpersonatedUserId = new-object Microsoft.Exchange.WebServices.Data.ImpersonatedUserId([Microsoft.Exchange.WebServices.Data.ConnectingIdType]::SmtpAddress, $MailboxName) 

  $gsMBResponse = $service.GetSearchableMailboxes($SearchableMailboxString, $false);
  $msbScope = New-Object  Microsoft.Exchange.WebServices.Data.MailboxSearchScope[] $gsMBResponse.SearchableMailboxes.Length
  $mbCount = 0;
  foreach ($sbMailbox in $gsMBResponse.SearchableMailboxes)
  {
      $msbScope[$mbCount] = New-Object Microsoft.Exchange.WebServices.Data.MailboxSearchScope($sbMailbox.ReferenceId, [Microsoft.Exchange.WebServices.Data.MailboxSearchLocation]::All);
      $mbCount++;
  }
  $smSearchMailbox = New-Object Microsoft.Exchange.WebServices.Data.SearchMailboxesParameters
  $mbq =  New-Object Microsoft.Exchange.WebServices.Data.MailboxQuery($KQL, $msbScope);
  $mbqa = New-Object Microsoft.Exchange.WebServices.Data.MailboxQuery[] 1
  $mbqa[0] = $mbq
  $smSearchMailbox.SearchQueries = $mbqa;
  $smSearchMailbox.PageSize = 100;
  $smSearchMailbox.PageDirection = [Microsoft.Exchange.WebServices.Data.SearchPageDirection]::Next;
  $smSearchMailbox.PerformDeduplication = $false;           
  $smSearchMailbox.ResultType = [Microsoft.Exchange.WebServices.Data.SearchResultType]::StatisticsOnly;
  $srCol = $service.SearchMailboxes($smSearchMailbox);
  $rptCollection = @()

  if ($srCol[0].Result -eq [Microsoft.Exchange.WebServices.Data.ServiceResult]::Success)
  {
   foreach($KeyWorkdStat in $srCol[0].SearchResult.KeywordStats){
    if($KeyWorkdStat.Keyword.Contains(" OR ") -eq $false){
     $rptObj = "" | Select ItemType,ItemHits,Size
     $rptObj.ItemType = $KeyWorkdStat.Keyword.Replace("Kind:","")
     $rptObj.ItemHits = $KeyWorkdStat.ItemHits
     $rptObj.Size = [System.Math]::Round($KeyWorkdStat.Size /1024/1024,2)
     $rptCollection += $rptObj
    }
   }   
  }
  Write-Output $rptCollection
  $rptCollection | Export-Csv -NoTypeInformation -Path $OutputFileName

  }
}

Popular posts from this blog

The MailboxConcurrency limit and using Batching in the Microsoft Graph API

If your getting an error such as Application is over its MailboxConcurrency limit while using the Microsoft Graph API this post may help you understand why. Background   The Mailbox  concurrency limit when your using the Graph API is 4 as per https://docs.microsoft.com/en-us/graph/throttling#outlook-service-limits . This is evaluated for each app ID and mailbox combination so this means you can have different apps running under the same credentials and the poor behavior of one won't cause the other to be throttled. If you compared that to EWS you could have up to 27 concurrent connections but they are shared across all apps on a first come first served basis. Batching Batching in the Graph API is a way of combining multiple requests into a single HTTP request. Batching in the Exchange Mail API's EWS and MAPI has been around for a long time and its common, for email Apps to process large numbers of smaller items for a variety of reasons.  Batching in the Gr...

Sending a Message in Exchange Online via REST from an Arduino MKR1000

This is part 2 of my MKR1000 article, in this previous post  I looked at sending a Message via EWS using Basic Authentication.  In this Post I'll look at using the new Outlook REST API  which requires using OAuth authentication to get an Access Token. The prerequisites for this sketch are the same as in the other post with the addition of the ArduinoJson library  https://github.com/bblanchon/ArduinoJson  which is used to parse the Authentication Results to extract the Access Token. Also the SSL certificates for the login.windows.net  and outlook.office365.com need to be uploaded to the devices using the wifi101 Firmware updater. To use Token Authentication you need to register an Application in Azure https://msdn.microsoft.com/en-us/office/office365/howto/add-common-consent-manually  with the Mail.Send permission. The application should be a Native Client app that use the Out of Band Callback urn:ietf:wg:oauth:2.0:oob. You ...

How to test SMTP using Opportunistic TLS with Powershell and grab the public certificate a SMTP server is using

Most email services these day employ Opportunistic TLS when trying to send Messages which means that wherever possible the Messages will be encrypted rather then the plain text legacy of SMTP.  This method was defined in RFC 3207 "SMTP Service Extension for Secure SMTP over Transport Layer Security" and  there's a quite a good explanation of Opportunistic TLS on Wikipedia  https://en.wikipedia.org/wiki/Opportunistic_TLS .  This is used for both Server to Server (eg MTA to MTA) and Client to server (Eg a Message client like Outlook which acts as a MSA) the later being generally Authenticated. Basically it allows you to have a normal plain text SMTP conversation that is then upgraded to TLS using the STARTTLS verb. Not all servers will support this verb so if its not supported then a message is just sent as Plain text. TLS relies on PKI certificates and the administrative issue s that come around certificate management like expired certificates which is why ...
All sample scripts and source code is provided by for illustrative purposes only. All examples are untested in different environments and therefore, I cannot guarantee or imply reliability, serviceability, or function of these programs.

All code contained herein is provided to you "AS IS" without any warranties of any kind. The implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly disclaimed.